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NOMENCLATURE

a fiber radius

b half thickness of a layer

b non-dimensional, (b/a)

c specific heat

d distance between surface and nearest fiber

d non-dimensional, (d/a)

E fiber-to-matrix conductivity ratio

H fiber-to-matrix diffusivity ratio

k thermal conductivity

L total length of a composite specimen, see Figure 2.5

M number of divisions along the x-direction

N number of divisions along the y-direction

q heat flow

Q surface heat flux

T temperature

T non-dimensional temperature (Tkf/aQ)

v volume fraction of total

x axial coordinate

R non-dimensional, (x/a)

y transverse coordinate

non-dimensional, (y/a)

* xi



•Greek Letters

a thermal diffusivity, (k/pc)

i (Ao)/(Ax)
2

e time

z non-dimensional time (af0/a 2)

p density

similarity variable

Subscripts

av refers to the transverse-average value (temperature)

e refers to effective medium

f refers to fiber material

i,J finite-difference direction subscripts (indexes)

m refers to matrix material

s refers to surface
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SECTION I

INTRODUCTION

With increasing use of composite materials in industries, their

applications have been extended to areas where thermal properties are a

critical concern. Consequently, thermal responses of composites under

operational conditions become important and constitute a significant cri-

terion for their selections in specific applications. In principle,

thermal responses can be exactly calculated, provided that the thermal

properties of the constituents of the composites and their geometrical

patterns of distribution or dispersion are known. In reality, however,

there are many obstacles along this path of analysis. In the first

place, the calculational efforts would be, practically speaking, prohibi-

tive even if the aforementioned provisions are fulfilled, i.e., the

thermo-physical properties and dispersion geometries are known a priori.

Second, the thermo-physical properties are not well-defined for existing

constituents of the present-day composites. And third, their geometrical

patterns of dispersion are only describable in statistical terms. For

these reasons, current research efforts are being directed to all three

aspects.

To circumvent the enormous expenditure of calculational efforts

required in a point-by-point exact analysis of thermal responses in com-

posites, a viable approach is to consider a simplified one-medium bulk

0



replacing a real composite body; the medium so construed is to have all

the macroscopic attributes of its real counterpart. Thus, if a composite

body has directional-dependent thermal properties, the one-medium equiva-

lent-often referred to as the effective medium--would be designated as

an orthotropic medium having its thermal conductivities different in the

three principal directions. In the past decade or so, considerable re-

search emphasis has been devoted to determine the effective thermal con-

ductivities for composites of various types of geometrical dispersions.

Some efforts were experimental; and most are analytical based on statis-

tical concepts or on exact heat conduction analysis for simple geometri-

cal patterns.

In performing thermal analyses based on the equivalence principle,

i.e., using effective values in an equivalent orthotropic medium, an im-

plicit shortcoming is the fact that the temperature responses thus ob-

tained are only representatives of those in a real composite. Stated

differently, the calculated temperatures are the average values over re-

peating units of the composite in question. To illustrate this differen-

tiation, consider a very simple case of a layer-composite consisting of

alternating layers of two different materials in steady-state heat con-

duction in a direction transverse to the stacking plane of the layers.

The actual temperature distribution consists of a series of zigzag

straight lines across the entire composite body; the slope of the tempera-

ture lines across layers of one material is different from that across

layers of the second material. By an effectiv#-medium approach, however,

a single straight line now describes the temperature variation across all

layers. The real temperature distribution across one repeating unit--two
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adjacent layers of two different materials--are two straight lines with

two different slopes determined by the respective thermal conductivities

of the materials. In some engineering applications results based on the

equivalent principle assumption are adequate, such as to determine the

heat flow or other overall performance parameters. In other applications,

they may be insufficient, such as to determine the thermal stresses which

are governed by relative thermal expansions of the layers in contact with

each other. In essence, it is the local temperature distributions that

dictate local performance parameters. Hence, the approach using an ef-

fective medium, while useful in a majority of applications, must be sup-

plemented by suitable criteria so that the local variations on a micro-

structural level can be judged.

For heat flow along uni-directional fibers in composite materials,

an approximate method of transient analysis [1] has been devised which

gives the overall temperature distributions as well as the local devia-

tions. The method of analysis yielded two important parametric combina-

tions governing the accuracy of the analysis: they are the fiber-matrix

conductivity ratio and the fiber-matrix thermal capacity ratio. For heat

flow perpendicular to uni-directional fibers in composites, however, the

situation is more complex. The principal difficulty lies in the fact that

each fiber is a self-enclosed boundary in a binding matrix. Analytically,

the entire composite body contains an enormous number of doubly-connected

regions for which a comprehensive mathematical treatment is impossible.

Consequently, in order to account for the local variances in a real compo-

site material, the method of repeating units, which examines the transient

heat flow phenomena across a representative section of a composite body,

3



must be further scrutinized. In this way, any anomaly or unusual feature

can be identified.

In this report, microscopic temperature variations near fiber-

matrix interface positions are studied. By varying the thermal proper-

ties of the two constituents, the fibers and the matrix material, and by

means of the finite-difference method, a sufficient number of combina-

tions of the constituents' thermal properties are studied in this phase

of research. It is the purpose of such an undertaking to draw simplified

modelling conclusions with regard to heat flow across uni-directional

fibers in composite materials in general, so that approximate methods of

analysis can be developed which can incorporate those features observed

in the present work.
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SECTION II

PROBLEM STATEMENT

The simplest form of fibrous composite materials is one in which

all fibers are parallel to one another and are surrounded by a matrix

material. Depending on how fibers are related to one another, their ar-

rangement patterns can be classified into two categories: (1) staggered

array, and (2) rectangular array. Cross-section views of these compo-

sites are shown in Figure 2.1. In a staggered array, every other layer

of composite is shifted linearly by one-half of the fiber pitch; fiber

centers form a rectangle in a rectangular array. In a staggered array

they form an equilateral triangle.

Central to the method of simplification to a repeating unit is the

fact that for most fibrous composites, the physical dimensions of these

fibers are indeed very small compared to the dimensions of the structures

into which the composite materials are fabricated. When a structural com-

ponent is exposed to thermal boundary conditions which are in general not

one-dimensional, the individual fibers or the geometrically-similar re-

peating units are essentially under the influence of one-dimensional heat

load conditions. In other words, the surface of a composite structure

may be subjected to a non-uniform temperature or non-uniform heat flux,

but viewed from the dimensional scale of a fiber or a repeating unit con-

sisting of a number of fibers, the boundary surface temperature non-
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Rectangular Array Staggered Array

Figure 2.1. Parallel fiber arrays

uniformity or surface heat flux variation becomes negligible from one re-

peating unit to another. The repeating unit can therefore be considered

a one-dimensional problem insofar as the mutual thermal interactions be-

tween the fibers and the surrounding matrix materials are concerned.

For heat flow across the uni-directional fibers, a repeating unit

is that isolated from a composite body and is shown in Figure 2.2.

Considered in this report is one common type of surface heating:

that due to a step-rise of the surface heat flux. By inspecting Figure

2.2, it is evident that when a heat flux is uniformly imparted to the sur-

face, the temperature fields in adjacent layers will be exactly repli-

cates of one another because of geometrical symmetry. Thus, the tempera-

ture response of the entire region can be represented by the response of

a single layer as shown in Figure 2.3. Also, because the temperature

fields in adjacent layers are symmetrical, there is no heat exchange
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Figure 2.2. Layer positions in rectangular array

Heat~iw:1

Figure 2.3. Single-layer representation of composite
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between individual layers. Thus, the upper and lower boundaries of the

reference layer shown in Figure 2.3 are considered as insulated.

Preliminary calculations indicate that when heat is imparted to

a composite surface, large temperature differences exist only between

the matrix material and the fibers near the surface region at which heat

flow originates. And large temperature differences extend to a depth of

only one or two fiber diameters. Hence, in order to delineate the

micro-structure temperature distribution of the fibers and their sur-

rounding materials, a two-fiber composite configuration as in Figure 2.4

is adopted in this study. The boundary at the end of the two-fiber com-

posite is considered as insulated.

Matrix

S////,////,//////////////,///////// /

Figure 2.4. Two-fiber composite
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With these assumptions, the problem is now reduced to the study of

transient heat conduction in a two-fiber composite. Heat flows into the

composite in a direction perpendicular to the fiber axis and three sides

of the composite are insulated as shown in Figure 2.4.

Next, a finite-difference solution to this problem is formulated.

11.I THE SOLUTION METHOD

The configuration in Figure 2.4 is the focus of analysis for tem-

perature responses when an impulsive uniform heat flux is imparted to the

left surface (non-insulated). Such a configuration represents a prohibi-

tive problem from an analytical viewpoint; a numerical approach is there-

fore used.

In the numerical approach using a finite-difference method of sol-

ving the governing partial differential equations for each region, the

S entire domain in Figure 2.4 is represented by grid points. The grid points

may be arranged either in a rectangular mode or in a circular mode depend-

ing on the geometries involved. The former is used in this study.

Insofar as the entire configuration in Figure 2.4 is concerned,

there is a repeating pattern from cell to cell, with each cell consisting

of a rectangular boundary enclosing a circular fiber in its geometrical

center. Hence, in order to show the grid point distribution in the entire

configuration, a single cell representation is sufficient. Such a cell is

given in Figure 2.5, which outlines the upper half of the unit since the

lower half is a mirror image.

For the sake of illustration, the boundary conditions of this

demonstrative cell are as indicated, i.e., the insulated boundary condition

9



V

* Insulated

Figure 2.5. Demonstrative cell and boundary conditions

applies at x - 2(a+d), at y = 0, and at y = b. For a real configuration

of more than one cell, the insulated boundary condition at x - 2(a+d)

does not apply, but will be transferred downstream to a location

x = 2n(a+d) where n indicates the number of cells under consideration.

The employment of only the upper half of a cell for the analysis

is justified, since the temperature responses of the two halves will be

mirror images of each other. Thus, by making this simplification, the

amount of time for numerical calculations will be greatly reduced.

The governing partial differential equation for the thermal re-

sponse of the fiber and matrix materials is given by the basic diffusion

equation. For a two-dimensional heat conduction, the fiber region will

be governed by:

* 10



32Tf/ax2 + ;2Tf/;y2 = [(pc)f/kf](aTf/ae) (11.1)

and for the regions occupied by the matrix material, the governing equa-

tion is:

a2T m/x2 + a2 Tml y 2 . [(Pc)m/km](BTm/le) (11.2)

To solve these equations, specific boundary conditions are needed. The

first boundary condition will be that at the borders y = 0 and y = b (in-

sulated), thus:

STM(x,b,e)/ay = 0 (11.3)

aTm(xoe)l/y - 0 (11.4-1)

S aTf(x,0,e)/ay = 0 (11.4-2)

At the interface of fiber and matrix, the heat fluxes must be the same

for both materials, i.e.,

kf(aT/3n)f = kO(IT/3n)m (11.5)

wherein n indicates the direction normal to the interface between the two

materials.

Another boundary condition is, of course, the condition at the non-

insulated surface x = 0. The boundary condition at x = 0 will be a con-

stant uniform flux of heat into the composite at this position:



-km(BTm/Bx) - Q - Constant in time, (11.6)

where Q denotes the heat flux magnitude. The boundary condition at the

insulated end is:

km(aTm/ax) = 0 at x - 2(a+d) (11.7)

For the initial condition, it is assumed that the initial tempera-

ture is zero everywhere. The choice of a zero initial temperature is on-

ly a matter of convenience.

T(x,y,O) - 0 (11.8)

Dimensionless equations often simplify an analysis and are more

convenient to use. Thus, the partial differential equations and boundary

conditions will be written in non-dimensional forms using characteristic

values of the fibers as references. The non-dimensional temperature will

be defined as,

T - (kfT)/(Qa) (11.9)

and the dimensions of the region in Figures 2.4 and 2.5 will be non-dimen-

sionalized with respect to fiber radius a. Hence,

jinx/a, y/a (11.10)

0 12



Also define the non-dimensional time as:o2
0 - a fe/a (11°11)

Note that all non-dimensional variables carry a bar, while dimen-

sional variables have no bars. This will be the convention throughout

the study.

Using the definitions from Equations 11.9 through II.11, the par-

tial differential equations and boundary conditions (Equations II.1 through

11.8) become, for the fiber material,

;-/a-2+ -2/9ý2 (11.1-a)

and for the matrix material,

a2"TT/x2 + D2"T/a. 2 - (af /a) (B//e) (11.2-a)

Equations 11.3 and 11.4 become:

aT/, , 0 (11.3-a)

T/ag (xO,) = 0 (11.4-a)

and Equations 11.5 through 11.8 will be:

kf(aT/a•)f = k,(ýT/an)m (11.5-a)

0 13



O (/Tax) = - (ll.6-a)

km(BT/aI) = 0 at T= 2(l+Z) (11.7-a)

-(_,",O) = 0 (II.8-a)

In the next section, finite-difference formulas will be derived

for determining the temperature responses in fiber-matrix composites.

11.2 THE FINITE-DIFFERENCE SOLUTION OUTLINE

It is necessary to represent the region in this Figure 2.5 by grid

points to perform a finite-difference analysis. To further simplify the

problem, a square grid configuration will be used.

The length of the cell (2a + 2d) and its width b are divided into

M and N small increments of equal length AR = Aý, respectively. To avoid

extra calculations, the number of increments are so chosen that the seg-

ments b, d, and a in Figure 2.5 contain integer numbers of increments,

i.e., no fractional grids appear in the cell. Thus, minor adjustments of

cell dimensions may be required. These adjustments, however, will be

very small compared with the overall cell dimensions and will not affect

the results.

Although the number of grids for the cell is arbitrary, it is a

significant factor in the memory and time required for computations. It

is also a determining factor in the accuracy of the results. Naturally,

the more the number of grids, the more accurate are the results. On the

other hand, the more the number of grids, the larger is the required com-

putation time. Therefore, the number of grids must be chosen so as to

* 14



achieve an optimum in accuracy and computation time. A minimum number of

four grids is used for the smallest of segments a, d, and (b-a) in Figure

2.5.

At each intersection point of the grids, a node is located at

which the temperature is to be calculated. This pattern results in M+l

nodes along the x-axis, and N+l nodes along the y-axis. As it can be

seen in Figure 2.6, the entire region is divided into small grids by

horizontal and vertical lines which are hereby called rows and columns,

respectively. The columns and rows are numbered from left to right, and

bottom to top, respectively. For convenience, each of these ordinal num-

bers starts from 1.

The nodes are located at the intersections of columns and rows and

are identified by their column and row numbers. Throughout this discus-

sion, index-i represents the column number; and index-j, the row number

of any node.

An important issue in the analysis is the treatment of nodes adja-

cent to fiber-matrix interface (interface nodes). These nodes can be

treated in different ways. In an early study on the effective conductivi-

ties of uni-directional fiber-composites, Han and Cosner [2] suggested

the use of intermediate points on the interface to compute the tempera-

ture of these nodes. The temperature of an intermediate point is found by

interpolation between the temperatures of their surrounding nodes. The

temperature of interface nodes are then found using intermediate point

temperatures. This method, although accurate, requires an extra amount

of bookkeeping and also requires a long computation time, especially for

0 15
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larger volume ratios and for a composite with more than one cell; there-

fore, a less complicated method is devised and is described below.

As it can be seen in Figure 2.6, the circular boundary between two

regions passes through individual grids (here called interface grids) di-

viding them into two generally unequal areas. If the number of grids in

the cell is large, the area of a grid is small compared to the entire

cell area. Also, there will be a large number of interface grids along

the circular boundary, and another simplification becomes possible.

If the area of a grid is small, so is the area of a portion of

it, that is, the fiber part or matrix part. So, it is not unreasonable

to consider the entire interface grid as being either a part of the ma-

trix only or the fiber only, and to ignore the other part while nearly pre-

serving the original volume ratio. This means allocating the entire in-

terface grid to the fiber or to the matrix region depending on which side

has a greater portion of the interface grid to begin with. Thus, if the

fiber area is larger in the interface grid, that grid will be considered

a fiber grid and vice versa. Consequently, the original two-part inter-

face grid is now converted to a one-part grid that belongs to either the

fiber region or the matrix region.

Insofar as the shape of the interface boundary is concerned, the

circular boundary is now approximated by horizontal and vertical line seg-

ments connecting the nodes nearest the interface, and the mathematically

exact boundary now follows a zigzag path. The resulting interfacial

boundary is presented in Figure 2.7.

The simplification just outlined obviates the calculations for

intermediate points, which would be required in other methods. However,

0 17
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rearranging the shape of the boundary line results in new "boundary

nodes" which require special treatments in the analysis.

By inspecting Figure 2.7, it is seen that it is possible to classi-

fy the boundary notes into seven different types, six of them forming

three pairs of mirror images. These types are designated types 1 through

7. The interface nodes are classified according to the positions of their

four neighboring nodes. Type 1 nodes are the boundary nodes for which

the bottom and top neighboring nodes are also on the interface, while the

node on the left belongs to the matrix (matrix node) and the right node

is in the fiber (fiber node). Figure 2.8 illustrates this type of nodes.

The fiber and matrix nodes are called types 8 and 9, respectively;

these are nodes which are situated respectively in the interior of the

fiber and the matrix regions. Shown in Figure 2.8 are also nodes of types

0 2 through 9. As is apparent in this figure, types 1 and 5 are mirror

images of each other, and the other conjugate pairs are types 2 and 6,

and types 3 and 7. The shaded areas in this figure indicate the fiber

region.

In the next section, finite-difference formulas for the temper-

ature of these nodes are presented.

11.3 THE FINITE DIFFERENCE FORMULAS

Interface and interior nodes. Consider, for example, a node of

type 1. The node can be assumed to be at the center of a square grid

with a length of A[ as shown in Figure 2.9. The temperature of the en-

tire grid is represented by the temperature of the node. At a time e,

the temperature of the node is T. To find the temperature of the node at

0
19
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Figure 2.8. classifications of nodes
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i~j-0I

Figure 2.9. Heat balance for type 1 node

a later time, 94-A6, an energy balance is written for node (i,j) in Fi-

gure 2.9. It should be noted that node (i-l,J) is located in the matrix

region and node (i+l,j) is situated in the fiber region. Nodes (i,j+l)

and (i,j-l) are also interface nodes.

The heat flux from each of these nodes into (i,j) will be as fol-

lows: From (i-1,j) to (i,j)

q -l' km(Ti.l ,j-Tilj) (11.12)

In Equation 11.12, k m represents the matrix thermal conductivity, and the

01
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index notation (i-li) for q indicates that the direction of heat flow is

parallel to the rows.

From nodes (i,j+l) and (ij-l), the heat fluxes into (ij) consist

of two different parts: one through an area of (&x)/2 in the matrix re-

gion, and the other in the fiber region through an equal area. The heat

flows through these two parts are:

qJ-lJ (kf + k m)(Ti,ji - Ti,j)/2 (11.13)

and

qJ+lJ (kf + km)(Tij+1 - T 11)/2 (11.14)

where kf indicates the fiber thermal conductivity.

From node (i+l,j) in the fiber region, the heat flow is:

qi+l,i = kf(Ti+l,j - Tij) (11.15)

Counting all the heat fluxes into the central node (ij), the total

heat input results in a sensible heat change expressed by:

-q - Z mc(AT/AO)

Here, m indicates mass of each region in the grid (with a depth of unity,

of course). Using the non-dimensional variables defined in Equations II.9

and II.10, together with the following:
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H af /am

E - kf/km

A heat balance equation can be used to solve for the future temperature

T' in the temperature rise AT - T - T for the node defined by the
Ti~ Ti,j ij

indexes i and J. The resulting finite-difference formula for this type

of nodes is therefore:

(Type 1)

- [X/(H+E)]{27ii_,j + (E+l)Ti,jI + 2ETi+I,j + (E+l)T ij+1

-[4E + 4 - (H+E)/f]T } (II. 16)

The same procedure for nodes of Types 2 through 9 results in the follow-

ing equations.

(Type 2)

Tij- 2/(3H+E)]{2 + (E+,)T i~..1 + (E+I)Ti+Ij + 2Ti,j+l

-[6 + 2E - (3H+E)/(2X)]!itj} (11.17)
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(Type 3)

lij~ - /H3E](~lt_, + 2ET,,.. 1 + 2ET ~~ + (~) ~~

-[2 + 6E - (H+3E)/(21)JT~~ (II 18

(Type 4)

-[1/(H+E)]{(E+1)T il + 2ET i- + (E+1)-T il + 2T jl

-[4 + 4E -(H+E)/XJ] 1 1  (11. 19)

(Type 5)

=[X/(H+E)]12ETi4 1 1 i + ]E1"-1 + 2T il + E1Tjl

-[4 + 4E - (H+E)/!J]! (11.20)

(Type 6)

=j~ [21/(3H+E)]J(E+1)T i-l + (E+1)T l- + 2T ~~ + 2 ~~

-[6 + 2E - (3H+E)/(2x,)]i 11  (11.21)
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* (Type 7)

Tjj - [2!/(H+3E)]{2ETiIi + 2EYi 1 j_ 1 + (E+1)1i+1i1 + (E41)Tij+1

-[2 + 6E - (H+3E)/(21)])T (11.22)

(Type 8) (Fiber Nodes)

lij - 1[Ti-lj + Ti,j-i + i+lIj + lij+I - (4 - i/ 3 )Tij]

(11.23)

(Type 9) (Matrix Nodes)

L•,j " 3/H[i-l., + i , + Ti+lj +i,j+ - (4-H/) ]

(11.24)

Boundary nodes. So far, only the interior nodes of the cell have

been treated. Now, consider a nodal point on an insulated boundary, as

on the insulated end shown in Figure 2.10. The nodal point (i+l,j),

which is shown by a dashed-circle in this figure, is the position of a no-

dal point that would exist on right of (i.j), had it not been for the in-

sulated boundary.

From a physical point of view, because there is no heat flow from

(i-l,J) to (i+l,j), it is concluded that the temperatures of these two nodes
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Oij+I

i-'j i+l

Oi,j-I

Figure 2.10. A nodal point on the insulated end

must be equal since it is the temperature gradient that causes heat flow.

This means that the insulated boundary can be considered as a line of

symmetry for the existing temperature field and that an image field of

the same geometry exists beyond the insulated boundary.

Thus, node (i,j) can be classified as a regular node (in fiber or

matrix) with four neighboring nodes and with - as a stipu-

lation.

For the configuration in Figure 2.6, the finite different equations

for the insulated boundaries can be arrived at from Equations 11.23 and

11.24, and are shown below.
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Bottom Insulated Boundary (0 - 1)

Ti 1 1,2 (see footnote)

Fiber Nodes

TV a + + 2T - (4 - 1/X)t ] (11.25)

Matrix Nodes

-, (/)[i , + T + 2T , (4 - H/I)T (11.26)
1, 11, +1,1 1,2 1,1

Top Insulated Boundary (J - N+1)

Ti,N i,N+2 (see footnote)

O -' = (•/E)T + 2T +- - (4 - -I)
it,N+l [Ti-l,N+ 1 i,N +Ti+l,N+l - H/ý) i,N+l

(11.27)

Insulated End (i - M+I)

TM,j W T M+2,j (see footnote)

TM+Ij - (i/H)[2T +- T•+ I~l,j-i + TM+I - (4 - H/I)TM+,,J]

(11.28)

0 is a fictitious temperature below the bottom insulated boundary on
wfch the temperature is identified as Ti 1 . The mirror image gives this
expression. Similarly, Ti,N+2 is the mirfor image of the temperature
TiN; so is TM+2,j with respect to TMj"
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The assumptions made for insulated boundary nodes also apply for

the corner nodes (M+1,1) and (M+l,N+l). For the corner node (M+1,1). the

following holds:

TM,l = TM+2,1

T M+1,2 - TM+l,0

Thus, for this node:

+ii - (!/H)[2Y, + 2TM+1,2 - (4 - H/I)TM+,011  (11.29)

For the top corner node (M+I,N+I), the finite-difference formulas are:

T MN+I T M+2,N+l

TM+l,N T M+I,N+2

then:

T- (/H)[27MN+1 + 2TM+IN - (4 - H/I)T M+IN+I
M+I,N+l MO

(11.30)

Having the finite-difference equations for all nodes in the cell,

a computor program can be formulated to find the future temperatures of

all nodes.
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11.4 THE STABILITY CRITERION

The finite-difference equations shown in Section 11.3 for differ-

ent nodes in the composite cell are not always convergent; that is, they

do not always tend to the solution of the partial differential equation,

as grid and time spacings tend to zero. Therefore, certain conditions

must be met to assure convergence and to achieve the best approximate

solutions. This condition is known as the stability criterion.

For a fixed grid size, there is an upper limit for A6 beyond which

some errors will occur in calculations (beside round-off errors), and

these errors will be amplified as computations continue until the results

become meaningless. To prevent this from occurring, a stability criteri-

on must be met.

The following example shows how to establish the stability criter-

ion. Consider Equation 11.23 and write it as:

T! = 1[i-l,y + Tij 1 + Ti+l, + Tij+l] + [1 - 41]i

The first set of brackets on the right side of this equation is positive,

therefore the second set must also be positive in order to prevent unsta-

ble fluctuations. Thus:

1 < 1/4 (11.31)

Using the definition for X in the inequality of Equation 11.31 results in:
A

< .25(Ax) 2
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Writing in dimensional form,

af(AO)f(a) 2 _< .25(Ax) 21(a)2

then:

,&e < .25(Ax) 2/a f

Therefore, to have stable conditions, the time increment must

satisfy the above inequality. For other nodes, also, the time increment

must be found in the same fashion. Obviously, the smaller of all time

increments must be used in the computer program to satisfy the stability

criterion.
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SECTION III

TEMPERATURE RESPONSES

III.I RANGES OF PARAMETRIC VARIATIONS

In order to investigate the thermal responses of fiber composites,

a two-fiber composite body as shown in Figure 3.1 is taken and its temper-

ature response when a constant flow of heat is imparted to its surface at

S- 0 is studied. The volume ratio is always taken to be 0.5, representa-

tive of the current practice. As it is a typical value for carbon/epoxy

composites used in aircraft structures, this ratio together with the as-

sumption that the fibers are arranged in a square pattern results in the

dimensions shown in Figure 3.1, in which the fiber radius is taken to be

unity. The properties of the fibers considered in this report are arbi-

trarily taken as follows: kf - 230 and (pc)f - 51, both in a consistent

set of units. The numerical values of these two parameters are unimport-

ant because it is the relative magnitudes between the values of the two

constituents - fiber and matrix - that really govern the heat flow paths

and penetration depths, etc. The values taken are therefore a matter of

convenience, as shall be seen later.

Following the concept just discussed, the values of kf - 230 and

(Pc)f - 51 are therefore kept constant throughout this study, while the

corresponding values for the matrix material are varied such that the ra-

tios between the thermal conductivities and between the thermal capacities
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of the two constituents cover a range wide enough to draw meaningful

conclusions.

Convenient criteria for judging thermal characteristics of a com-

posite in reference to the basic component materials are the effective

values. Two principal ones are: (i) effective thermal conductivity ke

and (ii) effective thermal diffusivity ae. Effective thermal diffusivi-

ties have been studied extensively in the literature and are properties

pertaining to unsteady-state conduction phenomena. There are many ways

of estimating the effective conductivities which are, however, predicated

on a knowledge of the ratio of the constituents' thermal conductivities.

In this report, it is clear that it is the ratio of thermal conductivi-

ties kf/km that counts, not the numerical value of either one.

The effective thermal diffusivities are conceptually useful for

transient conduction analyses in composites when the time scale and the

distance scale are such that the temperature variation within one fiber

or across one lamination is small compared to the overall temperature

changes in the composite body. In other words, a composite medium is now

replaced by a homogeneous medium which has property values of ke and ae.

The temperature responses calculated on that basis would be the same as in

the composite medium if a scale larger than that of a fiber is considered

as representative. In most fiber-matrix composites, the fiber dimension

(radius) is invariably much smaller than the body dimensions (thickness).

Hence, the condition on the scale ratio is fulfilled. However, it is the

micro-structure temperature changes in the interstices that eventually

make up macroscopic temperature changes which are describable by the ef-

fective properties ke and me*
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In the make-up of the effective thermal diffusivity parameters de-

fined by,

%e = ke/(Pc)e

the divisor (pc)e is the effective thermal inertia, and, being a scalar

quantity can be obtained simply on a pro rata basis. Hence, the effec-

tive value (pc)e can be expressed by the following combination:

(Pc)e w (pc)fvf + (pc)mvm (111.1)

where vf and vm are the volume fractions of the constituents - fiber and

matrix - respectively.

All together, twelve cases were investigated. Values of the physi-

cal properties for the matrix medium were chosen in reference to those

arbitrarily fixed for the fiber material such that there were four ratios

of the effective to matrix conductivities. These are ke/km M 0.6, 1, 2

and 3. The first one is obviously the result of fibers being less conduc-

tive than the matrix such as carbon fibers in a metal matrix. Conversely,

the last value of 3 is the result of fibers being more conductive than the

matrix such as carbon fibers in a resin matrix.

With regard to the range of (pc)e/(pc)m, four values were intended,

namely 0.6, 1.0, 5 and 10. The lower value implies that the fiber medium

has a smaller thermal inertia than the matrix medium; and of course, the

opposite is true for larger values of 5 and 10. In performing the neces-

sary computations, however, computor time for the last two capacity ratios
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(pc)e/(Pc)m was found excessive when combined with the first two values

of ke/km and it became expedient to restrict the variations of (Pc)e/(Pc)m

to 0.6 and 1.0 only for ke/km - 0.6 and 1. Based on Equation III.1, the

value of (POc)m can be determined. To specifically determine the matrix

conductivity required to yield a desired effective thermal conductivity,

the information in Reference [2] was used. With the above described pro-

cedure, the cases considered are tabulated in Table 3.1.

In obtaining results for these cases by a finite-difference method,

the number of nodes along R and Y axes (referring to Figure 3.1) were kept

unchanged for all cases. This is to provide a basis for comparing the re-

sults more easily. The computor program calculates non-dimensional tem-

peratures of all nodes for various non-dimensional times. Time was varied

up to 10 for all cases except for cases number 2 and 8 in Table 3.1; for

these two cases time was varied up to 8 only, because of excessive compu-

tor time requirements. Computed results are presented in graphical forms.

Several comparisons are also made between the fiber-composite and the cor-

responding effective medium temperature responses to evaluate the validity

of the effective medium approach used for approximating the temperature

responses of fiber-composites.

111.2 LIMITING TEMPERATURE DISTRIBUTIONS - ASYMPTOTIC CASES

111.2.1 Early-Time Threshold

In order to synthesize the calculated temperature responses of com-

posites with various thermo-physical properties for fibers and the matrix

materials, it is imperative to establish some asymptotic criteria against

which the calculated temperatures can be compated. With the configuration
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defined in Figure 3.1, it is apparent that when heating of the composite

starts, the first layer of the material medium encountered is that of the

matrix material. Hence during the early stage of a heating period, the

temperature distribution in the composite body must be nearly the same as

when the fibers are absent. Based on this concept, an early asymptotic

solution can be established which is obviously the case of constant sur-

face heat flux to a semi-infinite body consisting entirely of the matrix

material. It is well known that such a heating problem is described by

the solution:

Tm - 2(Q/km) iam8 ierfc (nm) (111.2)

where nm is the similarity variable defined by,

0
x/(2.f8) (111.3)

The spatial temperature distribution is embedded in the error function in

Equation (111.2) through the similarity variable and is graphically shown

in Figure 3.2. The spatial distribution is given by the curve, which for

simplicity's sake can be approximated by two straight-line segments, AB

and BC. Line AB is the tangent to the curve at point A and intersects

the abscissa at B where nm M i/19. In the simplified picture, heating

of a semi-infinite solid is divided into two parts, consisting of a sur-

face layer from nm M 0 to nm - il/w , i.e., from A to B and, beyond this

surface layer, the remainder of the region in which the temperature remains

unaffected.
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Figure 3.2. Spatial temperature distribution due to a constant heat flux
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To relate the preceding discussion to the asymptotic analysis for

heat conduction in the fiber-matrix composite defined in Figure 3.1, an

average surface layer consisting of the matrix material alone is first

established. The reason for the average is that the fibers, being cylin-

drical in shape, has its forward-most position at (x/a) - 0.25 and its

largest cross-sectional obstruction at (x/a) - 1.25, where the center of

the first fiber lies. Replacing the cylindrical fiber by a square fiber

with the same area, the resulting equivalent square fiber has, therefore,

sides of -I in terms of the fiber radius a. The replacement equivalent

is devised just for the purpose of establishing an average heat front and

is superposed in Figure 3.1 where the frontal surface is located at a dis-

tance of (0.36a) from the heating surface. This value represents, of

course, an average value taking into consideration the roundedness of the

fiber. From such a simplification, it can be stated that before the heat

front reaches a position of x - 0.36a, heat conduction in the composite

body is not different from that in a semi-infinite body of the matrix

material alone. Setting nm to 1/JrF, and substituting x by 0.36a there

results a threshold time, or the early limiting time, et_l, given by

(Mmeti/a2) - (0.362w/4) (111.4)

Since in the computational scheme in this study, use is made of a dimen-

sionless time ;- afe/a 2 , Equation (111.4) can be expressed by

et-i - (afet-l/a 2 ) = O'l(af/am) (111.5)
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The significance of the early threshold time is that for time less than

that expressed by Equation (111.5). The temperature distribution in the

composite is virtually identical to that of a semi-infinite body of the

matrix material only. This applied to the depth direction and to the

transverse direction as well. Stated in other words, at very small times,

the transverse temperature variation, especially on the heating surface,

is quite small compared to the average temperature rise. This conclusion

is directly opposite to the deduction made in [1] for heat flow parallel

to the fiber orientation. For the twelve cases of the physical-property

combinations shown in Table 3.1, the early threshold times given by Equa-

tion 111.5 are listed in Table 3.2 together with the later threshold times

to be discussed next.

111.3.2 Later-Time Threshold

As the heating process continues, the matrix material and the fi-

bers are raised to higher temperature levels while conduction into the

composite interior proceeds. Under this condition, the entire composite

body would behave almost like a single-phase body or a single effective

medium. For this event to occur, the depth of heat penetration must in-

clude at least one fiber in the interior from the heating surface. To

arrive at a quantitative criterion, an effective medium occupying a semi-

infinite space is used; the temperature response due to heating of the

surface is analogous to Equations 111.2 and 111.3, except the physical

properties are now those of the effective medium. The heating depth is

obtained from Figure 3.1 at the rear of the square-equivalent, i.e.,

x - (0.36 +..fI)a. Setting ne = / NTand using the similarity variable

40



TABLE 3.2

0 CHARACTERISTIC VALUES OF DIFFERENT CASE STUDIES

EARLY-TIME LATER-TIME
CASE THRESHOLD, THRESHOLD, i/i1/ ; TF

NO. Zt-1 (Equa- it-2 (Equa-

tion 111.5) tion 111.7) (Note 2) (Note 2)

1 0.165 5.91 0.243 x 10- 2  0.404 x 10-2

2 0.034 2.04 0.54 x 10-2 0.698 x 10-2

3 0.488 10.5 0.417 x 10- 2  0.539 x 10-2

4 0.1 3.56 0.921 x 10- 2  0.921 x 10- 2

Note 1
5 2.44 26.5 0.932 x 10 2  0.848 x 10- 2

Note 1
6 0.5 9.0 2.07 x i0" 2  1.45 x 10-2

7 0.056 5.0 6.16 x 10- 2  1.95 x 10-2

8 0.0265 4.8 8.90 x 10-2 2.0 x 10-2

9 41.6 298 3.87 x 10-2 2.83 x 10-2

10 8.52 102 8.48 x 10-2 4.90 x 10-2

11 0.95 56.9 25.3 x 10-2 6.60 x 10-2

12 0.451 53.7 37.0 x 10-2 6.70 x 10-2

iReference Case (Pc)m, (Pc)f - (Pc)e, km - kf - ke

2 Based on reference values for fibers: kf - 51, (pc)f - 231
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ine as defined by Equation 111.3 for n., the later threshold time can be

expressed as:

(eit_2a 2 ) 2 (0.36 + )2 z4 - 3.56 (111.6)

Using the non-dimensional time 6, Equation 111.6 is recast as

6 t-2 = (cfet- 2 /a 2 ) = 3 . 5 6 (f/ae) (111.7)

and for the twelve cases investigated, the later threshold times are

listed in Table 3.2.

111.3 SURFACE TEMPERATURE RESPONSE - TRANSVERSE-AVERAGE VALUE

One of the most important performance parameters is the surface

0 temperature variation of the composite when a heat flux is imparted onto

the surface. Since the first layer encountered by the oncoming heat flux

is the matrix material, the surface temperature response of a semi-infin-

ite body comprised of the matrix material only must constitute one of the

two temperature bounds for a real composite body. And as time proceeds,

the effect of fibers embedded in the composite are brought into play;

consequently, the surface temperature variation at the later stage of the

process will be nearly the response by a single-phase medium whose physi-

cal properties are the effective values. The surface temperature varia-

tion based on the effective-medium calculation is then the other limiting

envelope. The computed surface temperature rise of a real composite,

therefore, lies between these two limits which are expressed by:
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Te-.s -(2Q -Fir)V VkJ(Pe(1.8

S- (2Q 1;P) / ) (111.9)

These two expressions for the surface temperature responses are derived

from Equation (111.2) by setting rim - 0 and show the well-known phenomen-

on that the surface temperature rise is inversely proportional to the

quantity of a single-phase medium. The numerical values of

IFPCTbased on the effective-medium values and the matrix-medium va-

lues for the twelve cases investigated are listed in Table 3.2. Note

that the tabulation is based on arbitrary set of kf, (pc)f, i.e., kf - 231

and (pc)f - 51.

A merit of the tabulation in Table 3.2 is that the limiting temper-

ature rises, being proportional to the values in the last two columns, can

be discerned immediately. As an example, Case 2 lists the values of

0.17 x 10-2 and 0.693 x 10-2 in the last two columns, indicating that the

temperature rise based on the effective-medium calculation is four times

as large as that calculated on the basis of the matrix material alone.

For case No. 8, the opposite is true. The transversely averaged surface

temperature for all cases rises with time, but is bracketed by these two

limiting bounds - referred to, hereafter, as the matrix-bound and effec-

tive-bound, respectively. For all twelve cases of the physical-property

combinations listed in Table 3.1, their transversely averaged surface

temperatures are displayed in Figures 3.3 through 3.11; for cases 4, 5,

and 9, their variations are not presented because of the following reasons.

Case 5 shows that the physical-property combinations give the matrix-bound
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and effective-bound temperature variations being close to one another;

consequently, graphic representations of the composite surface tempera-

ture variations would not be revealing in confirming or refuting the con-

cept of time threshold. Case 9 was not included, for the early-time

threshold time of 41.6 requires excessive computor time in order to reach

beyond the first limit; for Case 4, the fiber and the matrix properties

are identical and no graph is needed.

Returning to the criteria of threshold-time demarcation, Figure

3.3 shows that the surface temperature variation of the composite whose

properties are defined as Case 1 in Tables 3.2 and 3.3 is virtually

described by the upper limiting bound (in this event, the effective

bound) very near the later-time threshold of Zt-2 = 5.9; while at or near

the early-time threshold Ot-l - 0.165, the temperature variation is al-

most indistinguishable from the lower limiting bound (the matrix bound).

For the composite defined by Case 2, the average surface tempera-

ture variation with time is shown in Figure 3.4. While it is difficult

to discern the behavior near the early-time threshold, it is quite defin-

ite that the surface temperature is identical to that of the upper limit-

ing bound (the effective-bound). For the temperature variation shown in

Figure 3.5 for Case 3, that calculated for the composite is nearly paral-

lel but not identical to the upper (effective) bound, the upper time limit

of ; m 8. This is because of the later-time threshold of t-2 1 10 for

Case 3; whereas it is equal to 2 for Case 2.

The physical-property combination of Case 6 and those of the suc-

ceeding cases as well give the effective-bound as the upper limit. For

Case 6, Table 3.2 gives values of 0.5 and 9.0 for the early-time and later-
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time thresholds; it can be established quite clearly that the composite

surface temperature shown in Figure 3.6 does follow these two limiting

bound curves at the determined threshold time values. For Case 7 and

Case 8, the upper and lower bounds of the temperature-time curves indica-

ted in Figures 3.7 and 3.8 show greater discrepancies from each other

than other cases; however, the trend of the calculated surface tempera-

ture variations - following at first the matrix bounds up to the early-

time thresholds of 0.056 and 0.026, then deviating towards the effective

bounds near the later-time thresholds of 5.0 and 4.8 - is quite apparent.

The temperature variation shown in Figure 3.9 for Case 10 gives a

close scrutiny of the early-time behavior as the calculated value gradu-

ally deviates from the matrix-bound starting from e - 0 to 6 - 8 t-]. of

8.52 at which the calculated value is still much closer to the matrix-

bound than to the effective-bound. As the later-time threshold is 102,

the limited span of the calculations did not permit a close examination

of the temperature-time curve at later times. For Case 11 and Case 12,

shown in Figure 3.10 and 3.11, a further confirmation of the early-time

threshold concept is found in that the matrix-bound temperatures are near-

ly identical to those computed for the composite surfaces. However, for

both cases, the later-time thresholds are too large to permit an examina-

tion of the later-time events.

III.4 TRANSVERSE DISTRIBUTIONS OF THE COMPOSITE SURFACE TEMPERATURES

Unlike a one-medium temperature response, the surface temperatures

of composites with uni-directional fibers are not found uniform across a

repeating element, as defined in Figure 3.1, from 7 0 to Y - 1.25.
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During the very early stage of a heating process, i.e., for 6 much less

than 6 t-l' the composite surface (and, in fact, the entire body) responds

in an almost identical fashion to that of a half-space body consisting of

the matrix material only.

As heating proceeds, crossing over the early-time threshold, the

influence of the embedded fibers begins to assert itself and the result-

ing surface temperature distribution from • - 0 to 5 - 1.25 becomes more

non-uniform. Near Y - 0, aligned with the fiber centers, the surface

temperature rise deviates from the matrix-bound towards the effective-

bound. These two bounding temperatures have been defined by Equations

111.8 and 111.9. At or near -- 1.25, which is situated between rows of

fiber centers, the surface temperature rise is less influenced by the

presence of the fibers. Whether the surface temperature at y - 0 is

higher or lower than at y - 1.25 depends on the relative magnitudes of

the two temperature bounds, defined by Equations 111.8 and 111.9. Since

the two surface temperature rises are inversely proportional to the phy-

sical-property combinations ke( e and kmpm, the relative

values for all twelve cases are tabulated in the last two columns of

Table 3.2.

Between the limiting times of the early-time threshold 8t-i and

later-time threshold 8t-2' the level of the surface temperature undergoes

transition from the matrix-bound trend towards the effective-bound trend.

Also, the surface temperature variation from 5 - 0 to F - 1.25 exhibits

a maximum degree of non-uniformity in this period of transition time. The

variation can be, therefore, described as follows: The local temperature

at y = 0 has its value corresponding, crudely speaking, to the effective-
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bound temperature; the surface temperature varies towards y = 1.25 where

it approaches the matrix-bound level. In the interior of the composite

body, conduction in the y-direction smears the sharp temperature profile

existing on the surface of the composite.

Upon further heating, resulting in a time scale exceeding the

later-time threshold ;t-2' surface temperature non-uniformities tend to

diminish, as the entire body becomes more like a single medium character-

ized by the effective thermal properties.

The sequence of events which compartmentalize the surface tempera-

ture variations with time in the different time periods of a heating pro-

cess is of crucial importance in evaluating responses of all fibrous com-

posites undergoing any diffusion-controlled process, for example, heat

flow transient or moisture infiltration. To illustrate these events more

specifically and to ascertain the validity of the criteria established for

these events, two non-dimensional times 6 - 1 and 6 = 8 were selected and

the surface temperature variations in the transverse direction from y - 0

to Y - 1.25 were computed for the twelve cases in this numerical study. A

more demonstrative combination of the physical properties is afforded by

those prescribed by Case 7 characterized by the following:

(i) early-time threshold, 6t-1 - 0.06

(ii) later-time threshold, et- 2 = 5.0

(iii) matrix-bound temperature rise factor

1/ rk(i CZ m - 6.16 x 10-2

(iv) effective-bound temperature rise factor

1/ ;ke(-C)e - 1.95 x 10-2

For this case, the matrix medium, if alone by itself, would have a temper-
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ature rise three times as large as that of the effective-medium equiva-

lent. The time scale of e - 1 is substantially larger than the early-

time threshold, Zt-1' but is still much less than the later-time threshold,

bt-2" At a larger time of b - 8, the later-time threshold is well ex-

ceeded. For these two time instants, the computed surface temperature

variations are indicated in Figure 3.12.

Apparent to inspection is the observation that when the time scale

is I - 1 between the two thresholds, the non-uniformity from y - 0 to

S- 1.25 is quite appreciable; the variation is from 2.8 to 3.9 with a

transverse average value of 3.4. This accounts for a 30 percent excur-

sion of the mean value. At the same time instant, the effective-bound

temperature rise (applicable near Y - 0) is 2.34 and the matrix-bound rise

(applicable near y = 1.25) is 7.55. With an early-time threshold

et_ - 0.06, the temperature-time history of the surface is well within

the transition period.

At a larger time of • - 8, the surface temperature distribution be-

comes more uniform; it varies from a value of T - 6.6, near ý - 0, to a

value of T - 7.6, near 7 - 1.25, resulting in a mean value of 7.14. The

variation is 15 percent of the mean. At this larger time of B - 8, which

is well over the later-time threshold of et - 5.0, the effective-bound

value is 6.75 and the matrix-bound value becomes 21.4; the computed trans-

verse-average surface temperature of 7.14 indicates its asymptotic approach

toward the effective-medium prediction. Relevant to the preceding discus-

sion is the time variation of the transverse-average surface temperature

presented in Figure 3.7 for Case 7, where close proximity of the composite

surface temperature and the effective-bound prediction is striking.
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Figure 3.12. Transverse variations of the surface temperatures at e - 1,

Case 7
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111.5 TEMPERATURE DISTRIBUTIONS ALONG THE HEAT-FLOW DIRECTION

A more demanding evaluation of the proposed criteria is the in-

terior temperature distributions of a composite body in comparison with

the asymptotic temperature distributions of the effective-bound on the

one hand and of the matrix-bound on the other. The closeness of an ac-

tual temperature distribution with either one of the two bounds is

governed by the two time thresholds. First, transverse-average tempera-

tures in the interior of a composite is considered. It is defined by

erecting a cross-section perpendicular to the x-axis of Figure 3.1 and

the average cross-sectional temperature is obtained by weighting with

the thermal inertias of the materials such a cross-section contains.

Thus, there results:

ff(Pc)fTfd+ (III.I0)

av f(pc)f + m(pc)m

where the symbols, f and m, now denote the extents of the fiber and ma-

trix regions along the cross-section. When used as subscripts, the mean-

ing is obvious. Equation (III.10) defined the transverse-average temper-

ature, in compliance with the energy conservation concept.

For highlighting the interior temperature variations with reference

to the asymptotic solution bounds, the twelve cases of physical-property

combinations were first examined with regard to their potential for demon-

stration. Cases 3, 4, 5 and 6 were ruled out, because the limiting bounds

given by Equations 111.8 and 111.9 were too close to each to give meaning-
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ful comparisons. Cases 9 through 12 were not used because their later-

time threshold values were too large which would require excess computing

time for creditable comparisons. Of the remaining cases, 7 and 8 are

nearly alike and so are 1 and 2. Hence, Case 1 and Case 7 are used for

demonstrating the validity of the asymptotic temperature solutions.

Case 1 Temperature Responses. Tables 3.1 and 3.2 list the charac-

teristic values for the physical-property combination. The surface tem-

perature rise based on an effective-medium is 1.66 times as large as the

matrix-bound value. The early-time and later-time thresholds are 0.17

and 5.9, respectively. And in order to span over these two time limits,

the transverse-average temperature variations along the principal heat

flow direction x are calculated at time intervals of • = 0.1, 0.25, 0.50,

4 and 10.

At • = 0.1, the computed transverse-average temperature profile is

shown in Figure 3.13. Since the early-time threshold is Z t-i 0.17, the

computed average temperature profile is compared with the profile based

on the matrix-bound equivalent; the latter is also shown in Figure 3.13.

Some discrepancy between these two distribution curves is noted. If the

effective-bound curve was used, the departure of the composite average

temperature profile would be much greater, since the latter is 1.66 times

the matrix-bound reference curve.

For a larger time value, Z = 0.25, the average temperature profile

and the matrix-bound temperature distribution shown in Figure 3.14 show a

greater discrepancy from each other than in Figure 3.13. Further on, as

the time is increased to -= 0.5, the computed composite temperature-pro-

file is compared with the effective-medium limit, as is done in Figure 3.15
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and in succeeding illustrations for Z - 4 and 10. For Z - 0.5, the com-

posite temperature response is in a transition stage and the temperature

variation shown in Figure 3.15 indicates substantial departure from the

effective-medium limit as well as from the matrix-medium limit (not shown

in Figure 3.15). At still larger values of time * - 4 and 10, for which

the computed temperature profiles are displayed in Figures 3.16 and 3.17,

the composite transverse-average temperature profiles are nearly the same

as that of the effective-medium calculations. It is of significance to

note that the temperature comparison shown in Figure 3.16 for Z - 4 indi-

cates a very minute temperature rise at R - 5. In other words, the finite

configuration of Figure 3.1 in which only two fibers were included is

virtually equivalent to a semi-infinite configuration with more fibers

after the second one. For the time instant defined in Figure 3.16, i.e.,

Z - 4.0, the effective-medium prediction is therefore the same as the solu-

0 tion for a semi-infinite medium given by Equations 111.2 and 111.3 in

which the subscript m is replaced by the subscript e. For 8 - 10, at

which time the temperature distributions are contained in Figure 3.17,

the effective-medium limit is that of a finite region response, i.e, the

insulated boundary condition at R - 5 is taken into account. In both fi-

gures for Z - 4 and 10, the local influence of the fibers in affecting

the average temperature distribution is noted in slope discontinuities.

For the combination of the physical properties of Case 1, the fibers are

assumed less conductive than the matrix material, i.e., kf/km = 0.34;

this ratio results in a steeper slope of the heat path across the fiber

than across the matrix material only. (For Case 7, the ratio of the con-

ductivities is reversed, as shall be discussed later.)
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To probe further into the usefulness of the threshold criteria,

two-dimensionality of the temperature distributions in the composite in-

terior are examined. In Figure 3.18 are shown the temperature profiles

along the x-direction at selected values of y. The distributions shown

are valid for ; = 0.5, which is more than the early-time threshold but

is much less than the later-time threshold value. At a fixed x-position,

the temperature variances at different transverse stations can be readily

identified. They are more pronounced near the surface than in the inter-

ior. The interfacial positions characterized by a slope discontinuity are

marked by a circle-symbol. At a larger time 8 - 5 which is almost equal

to the later-time threshold, the corresponding temperature profiles are

displayed in Figure 3.19, in which transverse variances occur only

near the surface x - 0 but are much less pronounced. These distributions

at different transverse positions are nearly identical to each other and

are amply represented by a single effective-medium curve which for simpli-

city's sake is omitted from Figure 3.19.

Preceding discussions based on the calculated temperature respon-

ses of a two-fiber composite give sufficient credence and support to the

threshold time criteria in establishing the temperature bounds by demon-

stration with the Case-i physical property combination. The later-time

threshold can be stated another way which is perhaps more useful: By the

time the heat front has, based on the calculation using an effective-

medium replacement, reached the lee-side of the first fiber encountered

in the heat path, a one-dimensional effective-aedium is henceforth a satis-

factory replacement model for the temperature response in a real composite,

except with respect to the local variance of the fibers.
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Case 7 Temperature Responses. The physical properties of the con-

stituents for this combination are such that there is an appreciable dif-

ference between the two limiting reference temperatures - the matrix-

bound and the effective-bound. The former is three times as large as the

latter. Another distinguishing feature is the large fiber/matrix con-

ductivity ratio of 5.0 for this particular combination.

To evaluate the thermal responses for this case, the transverse-

average temperature variations with the depth direction are presented

first in Figures 3.20 and 3.21 at time instants of 9 - 0.5 and W - 5,

respectively. In conjunction with the times selected, it should be men-

tioned that the threshold times are 0.06 and 5.0, as given in Table 3.2.

Thus the first time instant selected is over the early-time threshold but

is short of the later-time threshold value. It is therefore expected

that the averaged temperature distribution along the depth direction will

be neither the effective-bound nor the matrix-bound. The curves shown in

Figure 3.20 attest to this observation, particularly near the surface lo-

cation. On the surface (x - 0), the composite average temperature rise

is about 2.9 while the effective-bound gives a value of 1.7 and the matrix-

bound yields a temperature of 5.4. This means that the average composite

surface temperature has migrated toward the effective-bound through an

appreciable range, beginning from the matrix-bound level.

At a later time of b - 5, however, the effect of the conductivity

disparity begins to appear even though the overall agreement between the

composite transverse-average temperature and the profile on the basis of

an effective medium appears good. Figure 3.21 illustrates this observa-

tion. The distinct slope changes at R - 0.3, 2.2 and 2.7, although having
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been averaged at these positions, demonstrate the conductivity-ratio ef-

fect very markedly.

Further demonstration of the conductivity-ratio influence is found

in the temperature distribution patterns in the interior of the composite

configuration. Shown in Figures 3.22 and 3.23 are the two-dimensional

patterns of the temperature responses for ; - 0.5 and ; - 5.0, respective-

ly. In both illustrations, there is very little transverse temperature

variation (at different y-positions), except near the heating surface. A

larger transverse variation is noted on the surface for the time scale of

Z - 0.5 than for e - 5.0, and discontinuities in the temperature gradient

(located by the circle symbols) are more visually prominent than those

displayed in the temperature patterns for Case 1. It must be mentioned

that for Case 1, the ratio of the conductivities, kf/km, is 0.34, while

for Case 7, the ratio becomes 5, i.e., km is more than kf in the Case 1

combination and their relative values are reversed. For Case 7, the tem-

perature gradient is larger in the matrix region; and for Case 7, the

gradient is less. Visually speaking, the influence of the temperature-

gradient appears more pronounced in Case 7 than in Case 1; in reality the

influence in both cases is numerically equal but in different directions.

The transverse-average temperature variation with time for the

cross-section of x = 1.25, where the first fiber center is located, is

shown in Figure 3.24 together with that predicted based on the effective-

medium equivalent; closeness between these two variations with time es-

pecially after e = 5 is an additional confirmation of the time-threshold

concept advanced in Section 111.2.
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SECTION IV

CONCLUSION

Unsteady-state heat conduction in fibrous composite materials when

the heat flow direction is transverse to uni-directional fibers has been

considered in this report. Because of the complex nature of physical and

geometrical parameters involved in the problem, an analytical solution,

if not impossible, is a 'mean task. Thus, a numerical approach was made

by using an explicit finite-difference method to approximate the solutions

to governing partial differential equations.

The fiber and matrix thermal properties, as well as the volume

0 ratio, are the determining factors in the temperature response of the fi-

brous composite materials. These composites appear with a variety of

volume ratios in industries. Considering these wide varieties, it is im-

possible to analyze the temperature responses for all volume ratios with

different thermal properties for the fiber and matrix materials. Thus,

only a typical value of 0.5 was considered. The choice of this value for

the volume ratio is deliberate; it resembles the same volumes for the fi-

ber and matrix materials and can be used as a good reference for analyzing

temperature responses of composites with lower or higher volume ratios.

In total, twelve cases were considered. These twelve cases are

arrived at by first varying the ratio of (ke/km) from 0.6 to 3.0 with in-

termediate values of 1.0 and 2.0. Next, the ratios of the thermal capaci-

0 77



ties (pc) e/(Pc)m are varied from 0.6 to 1.0 with intermediate steps of 1

and 5. From these desired values and in combination with the rule of

mixtures, i.e.,

(Pc) e n vf(pc)f + Vm(PC)m

the values of (pc)m can be determined as a part of the original specifi-

cations. The thermal conductivity km to be specified is fixed by the de-

sired ratio (ke/k ) and the information in Reference [2] which relates

the ratios (kf/km.) and (ke/km).

The temperature responses of these twelve cases when a uniform heat

flux is imparted on their surfaces were analyzed to determine the influ-

ences of the parametric combinations, i.e., the thermal conductivity and

thermal capacity ratios. The influences of these parameters which are the

most important factors from a heat conduction viewpoint are discussed ex-

tensively in Section III of this report.

The criteria of dividing a heating process into an early-time

threshold and a later-time threshold appear quite valid and useful in

estimating the temperature responses of composite materials. For heating

times less than the early-time threshold, the surface temperature of a

composite body containing uni-directional fibers, when heat flow occurs

across the fiber axis, is asymptotically governed by a half-body occupied

by the matrix material only. And for heating times greater than the later-

time threshold, the effective-medium predicts the composite temperature

responses quite well. Inbetween these two thresholds, considerable tem-
4.

perature variation occurs in the transverse direction as well as between

the fibers and the immediate matrix material surrounding the fiber.
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The later-time threshold can be more conveniently expressed as the

time required for heat flux to penetrate through a layer of one-fiber di-

mension deep below the heating surface.
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